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Exercise 1 (Simulation of geometrically distributed data) 
a. Suppose that ~ uni , i.e., is uniformly distributed over the interval      

(0, 1).  Let 

form(0,1)U

λ  be a constant > 0.  Show that 1 ln( )Y
λ

= − U  is exponentially distributed 

with parameter λ  ( ~ exponential( )Y λ ) 
 
b. Using a. there is a simple way to generate (simulate) observations from a geometric 
distribution.  Let  , with pmf:  ~ geometric( )X p 1( ) (1 )xf x p p −= − ,   We want 
to simulate n independent observations of X for a given (known) p. As a first step, assume 
that 

1,2,3,x = K

~ exponential( )Y λ .  Show that 
 
 1( 1 ) (1 ) (x )P x Y x p p P X−− < ≤ = − = = x   
 
where λ  is chosen as  ln(1 )pλ = − − , and 1,2,3,x = K  
 
c. Introduce “[ ]”  as a notation for truncation upwards, i.e., [a] means the smallest 
integer larger or equal to a. For example,  [3,2] = [3,01] = [3,9] = 4, while [3] = 3. In 
STATA the function,  ceil(x), does just that. Let , for 

  Show that 
~   and  uniform(0,1)iU iid

1,2, ,i = K n
 

 ln( ) ~ geometric( ),   1, 2, ,
ln(1 )

i
i

UX p i n
p

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

K  

 
(Hint: Note that  [a] = x      when x is an integer.) 1x a⇔ − < ≤ x
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Exercise 2 
 
 
a. One game on a slot machine consists of initially paying a fixed amount, then push 
a button to make some figures spin before they stop in a random pattern. Certain 
predetermined patterns lead to a win, small or big, while the rest of the possible patterns 
lead to loss. Let p denote the probability of a win in a single game for a given slot 
machine (this p may vary between machines and is usually unknown for the player). Let 
X be the number of games (trials) played until the first win on this particular slot 
machine. We assume that  . Why is this a reasonable model here?  ~ geometric( )X p
 
b. We want to estimate  p based on n independent observations of X,  i.e.,  

. Show that both the moment method estimator (mme) and the maximum 
likelihood estimator (mle) are equal to 

1 2, , , nX X XK

 

 1p̂
X

=   where  
1

1 n

i
i

X X
n =

= ∑  

 
Calculate the estimate for the data: 2    (n = 5). ,13,1, 9,1
 
c. It is to be expected that the uncertainty of the estimate can be large since n is 
small. We will measure the uncertainty by calculating a 90% confidence interval (CI) for 
p. To find an exact 90% CI is not so easy here so we will utilize the asymptotic theory for 
mle, according to which 
 
 ˆ( ) (0, (D

nn p p N b p→∞− ⎯⎯⎯→ ))  
 
where   is a certain continuous function of p.  Show that ( )b p
 
  2( ) (1 )b p p p= −
 
Use this to derive, along the lines of example 5 in the lecture notes to Rice chapter 5, an 
approximate 90% CI for p, and calculate the CI based on the data. 
 
 
d. Parametric Bootstrap:  A weakness with asymptotic methods is that they require 
large samples to apply. Given a finite sample we cannot always be sure that an 
interpretation of data based on asymptotic approximations is justified. Only in 
exceptional cases there exist analytical ways to evaluate the exact statistical properties of 
an estimator based on a finite small sample. Therefore the most common way to obtain 
insight into the small sample properties of estimators is by simulation techniques (of 
which the “Bootstrap” family has gained a lot of importance in the later years). 
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In the present case we have a quite small sample size (n = 5) which may give reason to 
believe that the CI in c. is not quite justified. To obtain evidence about this issue we 
arrange a parametric bootstrap experiment. Based on a simulated sample of estimates of 
p, we can calculate a so called bootstrap 90% CI for  p and compare with the asymptotic 
CI. If there is no great difference this can be taken as evidence that the asymptotic 
methods worked well. If the difference is substantial, it is reasonable to discard the 
asymptotic CI’s and report the bootstrap CI for p instead. 
 
Read the text between example C and D in Rice section 8.5.3, in addition to example E. 
Use the method described there to calculate a 90% bootstrap CI for  p  based on a 
bootstrap sample of size B = 1000. You then need to generate 1000 data sets of size 5 
drawn from a geometric distribution with success probability p̂ . For each of the 
simulated data sets, calculate the mle estimates of p . Thus you have obtained 1000 
simulated observations of the mle’s p̂ , that we may call  . (Note 
that during the simulation, the true p has been approximated by the estimate 

,  1, 2, ,1000ip i∗ = K

p̂ .) 
 
To draw geometric observations is not direct in STATA and you need a small program to 
do that which you can find in the appendix. Running that do-file produces a STATA data 
set containing the 1000 simulated *

ip .   
 
Compare the bootstrap CI with the asymptotic one in c. Also calculate the mean of the 
simulated *

ip ’s. If p̂ is unbiased this mean should be close to the observed value of p̂ . 
So, if the difference is larger, this is evidence of a bias in p̂ . The difference itself can be 
taken as an estimate of the bias (i.e., ˆE( ) * ˆp p p p− ≈ − , where *p  is the mean of the 

*
ip ’s ). Calculate the estimate of the bias. 

 
 
e. Let ˆop  denote the observed value of p̂ . According to the asymptotic theory p̂  is 
approximately distributed as ( , ( ) 5)N p b p , and the bootstrap sample consequently 
should be approximately a sample drawn from ˆ ˆ( , ( ) 5)o oN p b p .  To study the quality of 
this approximation, make a histogram of the *

ip ’s with the density of 
ˆ ˆ( , ( ) 5)o oN p b p drawn in the same graph. Comment on the graph. 

 [Hint: To make two graphs on the top of each other in STATA you can achieve 
by the “Twoway”-command, or by means of the “Overlaid twoway graphs” on 
the graph menu. In addition you need to calculate the values of the relevant 
normal density for all the values of *

ip . This can be done by the function, 
normden(x,a,b), described by giving the command,  help normden. Then use the 
line-graph for the density (don’t forget to mark the sort option in the menu!) ] 
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Appendix  
 
Suppose we want 1000 observations of  p̂  based on 1000 samples of size 5 drawn from 
the geometric( ˆop ) distribution (I have used the value ˆ 0,192op =  in the program, so 
change this if you have another value). The following small do-file (can be written 
directly into STATA by the do-editor or read into STATA from an ASCII-file from the 
do-editor), produces a STATA data file containing the 1000 observations. I have called 
the data file, “geomdat”, here but you can choose your own name of course. The file is 
stored under the name, geomdat.dta. For calculation of the ip∗ ’s  this file must be read 
into STATA by the use-command (e.g.  use geomdat ).  
 
capture program drop geosim 
program define geosim 
 tempname sim 
 postfile `sim’ p using geomdat 
 quietly  { 
  local i=1 
  while `i’ <= 1000  { 
   drop _all 
   set obs 5 
   gen x=ceil(ln(uniform())/ln(1-.192)) 
   gen z=sum(x) 
   post `sim’ (_N/z[_N]) 
   local i=`i’+1 
    } 
   } 
 postclose `sim’ 
 clear 
end 
   
 
Notes: The first line makes it possible to edit the program geosim and then run it again 
without STATA protesting. The single quotation mark ` I find on the top of my backslash 
(\) key. The closing single quotation mark, ’, I find under * on the *-key.  
 
If z is a variable with numbers 1 2, , , kz z K z , using the function sum(z), creates a new 
column with the cumulative sums, 1 1 2 1 2 3, , ,z z z z z z+ + + K The total sum of the iz ’s is 
found as the last element of this column. Note that  gives the number of observations 
in the current dataset, so 

_ N
[_ ]z N  refers to the total sum. 

 
1. Read the lines into the do-editor. 
2. Run the do-file by pushing the run-key in the do editor (this only reads the 

program geosim into STATA but does not execute it). 
3. Then run the program by writing geosim in the command window. 
4. Then read into STATA the simulated data by the command, use geomdat. 

 
When you start your STATA session your working directory will be m:\. (You can 
confirm this by giving the command, cd.) This means that all your STATA files will be 
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together with all your other files on m:. It may be a good idea, before you start, to make a 
subdirectory named, for example, STATA1, to contain all your STATA-files. Then , the 
first thing you do after opening STATA, change the working directory by the command:  
cd STATA1. Then, when you save data files, do-files etc. from STATA, they end up in 
m:\STATA1. 
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